Food for thought
https://www.pnas.org/content/117/41/25254
We show that SARS-CoV-2 spike contains sequence and structure motifs highly similar to those of a bacterial superantigen and may directly bind T cell receptors. We further report a skewed T cell receptor repertoire in COVID-19 patients with severe hyperinflammation, in support of such a superantigenic effect. Notably, the superantigen-like motif is not present in other SARS family coronaviruses, which may explain the unique potential for SARS-CoV-2 to cause both MIS-C and the cytokine storm observed in adult COVID-19.
https://www.ahajournals.org/doi/full/10.1161/JAHA.120.016219
They also discovered that injection of the SARS‐CoV Spike protein alone could decrease lung ACE2 expression and cause acute lung injury, which can be alleviated by ACEIs/ARBs. Considering that the configuration of Spike protein of SARS‐CoV and SARS‐CoV‐2 is almost the same, SARS‐CoV‐2 infection might also downregulate the ACE2 expression in the lung, which might take part in the pathological process of the lung injury.
https://www.pnas.org/content/117/41/25254
We show that SARS-CoV-2 spike contains sequence and structure motifs highly similar to those of a bacterial superantigen and may directly bind T cell receptors. We further report a skewed T cell receptor repertoire in COVID-19 patients with severe hyperinflammation, in support of such a superantigenic effect. Notably, the superantigen-like motif is not present in other SARS family coronaviruses, which may explain the unique potential for SARS-CoV-2 to cause both MIS-C and the cytokine storm observed in adult COVID-19.
https://www.ahajournals.org/doi/full/10.1161/JAHA.120.016219
They also discovered that injection of the SARS‐CoV Spike protein alone could decrease lung ACE2 expression and cause acute lung injury, which can be alleviated by ACEIs/ARBs. Considering that the configuration of Spike protein of SARS‐CoV and SARS‐CoV‐2 is almost the same, SARS‐CoV‐2 infection might also downregulate the ACE2 expression in the lung, which might take part in the pathological process of the lung injury.